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Abstract
We present a new method for the solution of the Schrödinger equation applicable
to problems of a non-perturbative nature. The method works by identifying
three different scales in the problem, which then are treated independently: an
asymptotic scale, which depends uniquely on the form of the potential at large
distances; an intermediate scale, still characterized by an exponential decay of
the wavefunction; and, finally, a short distance scale, in which the wavefunction
is sizable. The notion of optimized perturbation is then used in the last two
regimes. We apply the method to the quantum anharmonic oscillator and find
it suitable to treat both energy eigenvalues and wavefunctions, even for strong
couplings.

PACS numbers: 03.65.Ge, 02.30.Mv, 11.15.Bt, 11.15.Tk

1. Introduction

It is well known that perturbation theory usually generates divergent asymptotic series [1].
Improving the convergence of the standard Rayleigh–Schrödinger perturbative expansion has
been the subject of many studies in the past (see, e.g., [2–6] and references therein) and many
variants of ‘optimized expansions’ have been proposed.

These efforts have been aimed to calculate either energy eigenvalues or wavefunctions and
are limited in practice by the rapidly growing complexity of generating corrections beyond
the first few orders in the perturbative expansion. In this paper, we present a method that
works equally well for energy eigenvalues and wavefunctions and, furthermore, can be used to
calculate these quantities to any given accuracy, since the generation of successive corrections
in the perturbative expansion only requires the solution of algebraic equations.

The method can be placed within the general context of the multiple-scale perturbation
theory (MSPT) [7–9], since it works by identifying different length scales in the problem,
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which reflect in different behaviour of the wavefunction: we illustrate the method by applying
it to the quantum anharmonic oscillator (AHO), which is the usual benchmark to test any
non-perturbative method [3–6, 10–13].

A thorough analysis of the quantum AHO in the MSPT framework is given in [5]: here
we follow a different path, by using the MSPT concept to write down a suitable ansatz for the
AHO wavefunction and then by using it to generate an optimized perturbative expansion. This
we do within the framework of the so-called linear delta expansion (LDE) [14–28]. The LDE
has been extensively applied in many different settings with varying degrees of success. For
example, in [29] it has been used to analyse disordered systems. In [30] it has been applied
to study the slow roll potential in inflationary models. Pinto and collaborators have applied
it to the Bose–Einstein condensation problem [31], the O(N)(φ2)2

3d model [32], the Walecka
model [33] and to the φ4 theory at high temperature [34]. More recently, the LDE has been
applied with success to the study of classical nonlinear systems [35, 36].

The paper is organized as follows. In section 2 we introduce the method and apply it to
the quantum AHO; in section 3 we present the numerical results and finally, in section 4 we
draw our conclusions.

2. The method

Given a quantum system such as the anharmonic oscillator, a standard application of the LDE
would involve a rearrangement of the Hamiltonian, e.g.

H = p2

2m
+ V (q) −→ Hδ = H0 + δH ′ (1)

with H0 = p2/2m+m�2q2/2 and H ′ = V (q)−m�2q2/2; so that Hδ=1 ≡ H , � being a trial
frequency. Physical quantities are expanded in δ, which is then set to 1: although exact results
should not depend upon �, at any finite order in δ one is left with �-dependent quantities.
The value of � can then be fixed by invoking a principle of minimal sensitivity (PMS) [16]
and minimizing the dependence upon � of a given observable, say the energy.

Here we would like to follow a different path, by introducing the trial parameter of the
LDE not in the Hamiltonian, but into the wavefunction.

The first step of this approach consists in the identification of three different scales in
the problem, which give rise to different behaviour of the wavefunction. Keeping in mind
the standard separation of the Hamiltonian in an unperturbed piece (the harmonic oscillator)
and a perturbative one (the anharmonic term), one can recognize that at very large distances
the wavefunction assumes its asymptotic behaviour: this is completely determined by the
anharmonic potential and it is the same for all (ground and excited) states; at intermediate
distances the wavefunction still decays exponentially, but now governed by the harmonic term;
finally, there is a short distance scale, in which the wavefunction is sizable.

Then, we introduce an arbitrary parameter in the last two scales, which is used, in the
spirit of the LDE, to optimize a perturbative expansion in a suitable parameter.

Consider the Schrödinger equation[
− h̄2

2m

d2

dx2
+

mω2

2
x2 +

µ

4
x4

]
ψn(x) = Enψn(x) (2)

where µ is the anharmonic coupling. The asymptotic behaviour of ψn(x) in the region of
large x is determined by substituting the ansatz ψn(x) ∝ e−γ |x|p into equation (2). One obtains
p = 3 and γ = √

µm/2/3h̄.
In order to make the three scales explicit in the wavefunction, we write

ψn(x) = e−γ |x|3−βx2
ξn(x) (3)
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where the exponential takes care of the correct behaviour in the limit |x| → ∞. Note
that the quadratic term in the exponential does not affect the behaviour at large distances,
but dominates at scales where |x| < β/γ . Here β = m

√
ω2 + �2/2h̄ is the coefficient of a

harmonic oscillator of frequency �̃ ≡
√

ω2 + �2, where � is an arbitrary parameter introduced
by hand; ξn is a well-behaved function, which satisfies the equation3:

ξ ′′
n (x) −

[√
2mµ

h̄
x2 +

2m�̃x

h̄

]
ξ ′
n(x)

+




√
2µm3�̃2

h̄2 x3 +
m2�2

h̄2 x2 −
√

2mµ

h̄
x +

2mEn

h̄2 − m�̃

h̄


 ξn(x) = 0. (4)

Equation (3) has been introduced in order to single out three different regimes in the
wavefunction: the purely asymptotic regime (|x| → ∞), where the cubic term in the
exponential dominates; the intermediate regime, where |x| is not yet asymptotic but
large enough to expect the wavefunction to be exponentially damped; the regime of small
|x| where the physics is all contained in the ξ . The last two regimes will display a dependence
upon the arbitrary frequency �, although in a quite different fashion (in fact, the intermediate
regime displays a truly non-perturbative dependence upon �). In the limits (µ,�) → 0
one obtains the equation for the harmonic oscillator of frequency ω, which admits polynomial
solutions (the Hermite polynomials).

It is worth stressing that the energy En in equation (4) is still the true energy, since no
approximation has been used to derive this equation.

We observe in equation (4) that both the wavefunction ξn(x) and the energy En depend in
some nontrivial way upon the anharmonic coefficient µ. On the other hand, the dependence of
ψn(x) and En upon the arbitrary frequency � is only fictitious, since this parameter does not
appear in the original equation (2). Nonetheless, we will show that � can be used to generate
an efficient expansion for the solution of equation (2).

Indeed we rewrite equation (4) as

ξ ′′
n (x) −

[
2m�̃x

h̄

]
ξ ′
n(x) +

[
2mEn

h̄2 − m�̃

h̄

]
ξn(x)

= δ




√
2mµ

h̄
x2ξ ′

n(x) −



√
2µm3�̃2

h̄2 x3 +
m2�2

h̄2 x2 −
√

2mµ

h̄
x


 ξn(x)


 (5)

where the left-hand side of equation (5) corresponds to the equation for a harmonic oscillator of
frequency �̃, with ansatz ψn = ξn exp[−(m�̃/2h̄)x2]. Following the spirit of the LDE, we
have introduced a parameter δ, which is going to be used as a power-counting device: when
δ = 1, equation (5) reduces exactly to equation (4).

Although δ is not a small parameter we will treat the right-hand side of equation (5) as a
perturbation, writing down the following expansions:

ξn(x) =
∞∑

j=0

δj ξnj (x) En =
∞∑

j=0

δjEnj . (6)

Combining equations (5) and (6), one can generate a hierarchy of equations, corresponding to
the different orders in δ.

3 We are considering only the region x > 0. The other region will be obtained by using the symmetry properties of
the wavefunction.
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Since we are doing perturbation theory, all the results, to any finite order in the expansion,
will depend upon the arbitrary frequency �. Such dependence will therefore be minimized
by applying the PMS, i.e. by requiring that a given observable O (the energy, for example) be
locally independent of �:

∂O

∂�
= 0. (7)

We will illustrate the method by explicitly showing the first two orders, although we have
obtained results up to the fifteenth order. To lowest order equation (5) reduces to the equation of
a harmonic oscillator of frequency �̃, whose solutions are the Hermite polynomials, ξn0(x) =
Hn(

√
m�̃/h̄x), while the energy eigenvalues are given by En0 = h̄�̃(n + 1/2), n = 0, 1, . . . .

To first order we have the equation

ξ ′′
n1(x) −

[
2m�̃x

h̄

]
ξ ′
n1(x) +

2m�̃

h̄
nξn1(x)

=

−2mEn1

h̄2 +

√
2mµ

h̄
x − m2�2

h̄2 x2 −
√

2µm3�̃2

h̄2 x3


 ξn0(x). (8)

Although such an equation is valid for any state of the AHO, for illustrative purposes we
will now consider only the ground state, for which ξ00(x) = 1. Then, for the case n = 0,
the solution of equation (8) is a polynomial of order 3 and can be cast in terms of unknown
coefficients as

ξ01(x) = a0 + a1x + a2x
2 + a3x

3. (9)

The coefficient a0 is not determined by equation (8) and we impose a0 = 0, since it corresponds
to the same functional form of ξ00.4 By substituting this polynomial into equation (8) one gets
the coefficients

a1 = 0 a2 = m�2

4h̄�̃
a3 = 1

3h̄

√
mµ

2
(10)

and the energy

E01 = −h̄�2

4�̃
. (11)

Therefore, up to first order, we get the energy

E
(1)
0 = h̄�̃

2
− h̄�2

4�̃
. (12)

It is important to note that the wavefunction obtained up to first order does not have nodes, a
desirable result for the wavefunction of the ground state.

The PMS to this order yields the solution � = 0 and the corresponding energy

E
(1)
0

∣∣∣
PMS

= h̄ω

2
. (13)

Here we would like to stress a point: we could have obtained a solution similar to that
of equation (9) by direct application of the Rayleigh–Schrödinger perturbation theory to the
wavefunctions of the harmonic oscillator. However, had we applied the LDE directly to
the Rayleigh–Schrödinger expansion, we would not have been able to reproduce the correct
asymptotic behaviour of the wavefunction [6].

4 This is somewhat analogous to the procedure employed in the Lindstedt–Poincaré method to get rid of ‘secular
terms’ in the solutions [35, 36].
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The extension of the method to include higher orders is straightforward and the details
will be presented elsewhere [37]. Here we just present the expression for the energy up to
third order

E
(3)
0 = h̄

32m2�̃5
[6µh̄�̃(−ω2 + 2�̃2) + m2(ω6 − 5ω4�̃2 + 15ω2�̃4 + 5�̃6)]. (14)

The optimal value of � is then obtained by using the PMS. The expression for � in the general
case is lengthy (see [37]) and we only write here its asymptotic value in the limit of large µ

(from now on we assume h̄ = m = ω = 1):

� = 2

(
3µ

5

)1/3

+ O[µ−1/3]. (15)

We can then substitute this expression in equation (14) and extract the asymptotic
behaviour of the energy of the ground state to third order:

E
(3)
0 = 3

16

(
75

2

)1/3 (µ

4

)1/3
+ O[µ−1/3]. (16)

The asymptotic behaviour of the ground state energy of the AHO has been studied in
[38], by using the exact Rayleigh–Schrödinger perturbation coefficients as an input. We use
this calculation as a reference to compare to our results. Following the notation set in [38] we
write the energy as

E0 = α0

(µ

4

)1/3
+ O[µ−1/3] (17)

and using this formula in equation (16) we obtain the coefficient α0 to third order in our
expansion to be

α
(3)
0 = 3

16

(
75

2

)1/3

≈ 0.627 (18)

which falls within 6% of the true value. We present our results in the next section.

3. Results

In this section, we present the numerical results for both the ground and first excited states of
the AHO. All the computations are carried out assuming h̄ = m = ω = 1.

We begin by studying the dependence of the coefficient α0 (the coefficient in the asymptotic
expansion of the ground state energy) on the perturbative order. We show this dependence in
figure 1, where the calculation has been carried out up to order 15. The horizontal line is the
result of [38], calculated with 20 digit precision. We note that our approximation converges
quickly towards this result, and in fact, the fifteenth order result falls within 0.01% of the true
value. We also observe a change in the behaviour of the approximate α0 in the passage from
the tenth to the eleventh order. This is the result of the emergence of a new extremum fulfilling
the PMS condition.

In figure 2 we plot the ground state energy of the AHO as a function of the anharmonic
coefficient µ. The solid bold curve is the exact result obtained by numerically solving
the Schrödinger equation for the AHO. The other five curves yield the energy at different
perturbative orders, up to fifth order. We observe that the energies converge nicely to the exact
result as the perturbative order is increased. We note from the plot that the perturbative results
lie below the exact result. Unfortunately, this is not a general property of the method, as we
have already observed in figure 1.
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0 2 4 6 8 10 12 14 16

Perturbative Order

0.62

0.64

0.66

0.68

α
0

Figure 1. The coefficient α0 in the asymptotic expansion of the ground state energy (see text) at
different perturbative orders, up to order 15. The broken line is the exact result [38].

0 2 4 6 8 10
µ

0.4

0.6

0.8

1

E
0

order 1
order 2
order 3
order 4
order 5
exact 

Figure 2. Ground state energy of the AHO as a function of µ to different perturbative orders,
assuming h̄ = m = ω = 1.

The ground state energy of the AHO as a function of the arbitrary parameter � is plotted
in figure 3, for µ = 5. The different curves correspond to different orders in perturbation
theory (from second up to fifth order). We observe that the ground state energy develops local
minima and maxima at different perturbative orders. In order to decide among the various
extrema of the function one asks that the solution corresponds to the extrema around which
the observable is flatter. We have noted that if another extremum is taken, the wavefunction
can develop unphysical nodes.

In figure 4 we plot the wavefunction of the ground state of the AHO for a very large
µ (µ = 200). The solid line is the exact (numerical) result, whereas the other lines refer to
the wavefunction obtained by applying our method to order 3, 10 and 15. From this plot we
see that the approximation works very well, even for large values of µ, and that, by going to
higher order, the wavefunction is approximated better and better.

This agreement is better appreciated by looking at figure 5, where we plot the ratio R
of the approximate wavefunction to the exact one. We have used µ = 200 and shown the
results obtained to third, tenth and fifteenth order. This plot should be compared with the
dashed curve in figure 2 of [6], the only one, to our knowledge, to provide a calculation of
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0 2 4 6 8 10
Ω

-3

-2

-1

0

1

2

E
0

order 2
order 3
order 4
order 5

Figure 3. Energy of the AHO as a function of �, at different perturbative orders (h̄ = m = ω = 1)

and keeping µ fixed (µ = 5).

-2 -1 0 1 2
x

1e-12

1e-09

1e-06

0.001

1

ψ 0
(x

) 

exact
order 3
order 10
order 15

Figure 4. Wavefunction for the ground state of the anharmonic oscillator, assuming m = h̄ = ω =
1 and µ = 200.

the wavefunction of the AHO. Note, however, that the authors of [6] display results only for
the ground state and only at first order.

This point is better illustrated in table 1, where we compare the results for the ground
state wavefunction of the AHO, given in [6], with our results to various orders. For example,
at x = 1 (which is already a rather large value), our method yields (at order 15) an error
of 0.1%, compared with 4.7% of [6]. Only for x = 2, where, however, the wavefunction
is exponentially small, does the method of [6] provide a better estimate. Moreover, the
normalization of the wavefunction constrains the error in the region of large x.

In table 2 we also see that the expectation values of various quantities can be calculated
with high precision using the method presented here.

A comparison of the AHO wavefunction to the same (high) perturbative order is not
possible since the results of [6] are only available to first order. We would like to stress that
with the technique described here, the calculation of the N th order contribution requires the
solution of 3N algebraic equations, which is quite straightforward using any computer algebra
package.
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Figure 5. Ratio of the approximate wavefunction to the exact (numerical) result at different
perturbative orders, assuming h̄ = m = ω = 1 and µ = 200.

Table 1. Ground state wavefunction for the AHO corresponding to µ = 200. In the first three
rows are the numerical results obtained by using our method to various orders; the fourth and fifth
rows are taken from [6].

x = 0 x = 0.5 x = 1.0 x = 1.5 x = 2

ψus(x) (order 3) 1.150 5.792 × 10−1 1.379 × 10−2 1.761 × 10−7 5.752 × 10−17

ψus(x) (order 10) 1.167 5.568 × 10−1 1.863 × 10−2 8.758 × 10−7 2.128 × 10−16

ψus(x) (order 15) 1.167 5.563 × 10−1 1.981 × 10−2 5.589 × 10−6 1.043 × 10−13

ψHatsuda(x) 1.170 5.519 × 10−1 1.885 × 10−2 3.925 × 10−6 3.095 × 10−13

ψexact(x) 1.167 5.564 × 10−1 1.979 × 10−2 5.168 × 10−6 7.982 × 10−13

Table 2. Expectation values of p2, x2, x4 and of the energy with our method to various orders,
compared with the results of [6] for µ = 200.

〈p2〉 〈x2〉 〈x4〉 〈H 〉
us (order 3) 3.212 412 23 0.080 885 49 0.017 237 22 2.508 510 06
us (order 10) 3.310 159 62 0.077 315 31 0.016 120 42 2.499 758 44
us (order 15) 3.307 231 35 0.077 309 03 0.016 148 77 2.499 708 80
Hatsuda 3.344 30 0.076 41 0.015 79 2.500 03
exact 3.307 174 23 0.077 312 37 0.016 149 31 2.499 708 77

In figure 6 we have tested the method by applying it to the calculation of the wavefunction
of the first excited state. The solid line corresponds to the exact result, whereas the other lines
correspond to the wavefunction obtained at different orders with our method. From the figure
one can appreciate the fast convergence in the region where the wavefunction is large. The
extension to study the full spectrum of the AHO is currently underway.

Finally, we have also applied our method to the problem of the double-well potential
(DWP), V (x) = −mω2x2/2 + µx4/4. In this case, the ansatz for the wavefunction has been
slightly modified in order to account for the different shape of the potential,

ψ
(dw)
0 (x) = ξ(x) exp(−γ (x − x0)

3 − β(x − x0)
2) (19)

where x0 = √
m/2µ�. In figure 7 we show the results of the application of our method to

the DWP up to third order, using the values h̄ = m = ω = 1 and µ = 0.1. The main point
of this figure is to show that the method that we are proposing here is viable even in this case,
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Figure 6. Wavefunction of the first excited state of the anharmonic oscillator, assuming
h̄ = m = ω = 1 and µ = 200.
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ψ
0(x
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exact
order 3

Figure 7. Wavefunction for the ground state of the double-well potential assuming h̄ = m = ω = 1
and µ = 0.1. The solid line is the exact (numerical) result, the dashed line is the wavefunction to
third order.

although a detailed analysis is left for future work. We stress that already at third order the
wavefunction of the DWP is well approximated by our method.

4. Conclusions

We have presented a method for the solution of the Schrödinger equation that can be applied to
non-perturbative problems. It is based on a novel implementation of the LDE, realized through
an ansatz for the wavefunction that takes into account its behaviour at different length scales:
an arbitrary parameter á la LDE, which enables us to optimize a perturbative expansion, is then
introduced directly into the wavefunction and not in the Hamiltonian as in a standard treatment
of the LDE. Virtues of the method are that the generation of higher perturbative orders in the
expansion can be accomplished with ease and that it can be used with no modifications to
obtain results for both the ground and excited states.

We have presented the results of applying this new method to the quantum anharmonic
oscillator. Specifically, we have computed the value for the ground state energy as a function
of the anharmonic parameter for several perturbative orders (up to fifth order), the value
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of the coefficient in the asymptotic expansion of the ground state energy up to perturbative
order 15, the wavefunction of the ground state and its ratio to the exact (numerical) one, and
the wavefunction of the first excited state. In all cases we found good agreement with the
exact results. We have also shown results for the ground state wavefunction of the double-well
potential, although a detailed analysis of this problem is left for future work.

Due to its simplicity and accuracy we believe this method to be competitive with the
other methods developed to deal with the AHO: as a matter of fact, the degree of precision
of the results can be drastically improved by raising the perturbative order in the expansion,
a step which does not bear any technical difficulty. Of course, it would be interesting to give
a formal proof of the convergence of this expansion, as already done in other approaches
[10–13, 25–28]. Note however that, although we are also employing a LDE, we cannot
directly apply in our case the procedure followed in these papers, since it is generally based on
a standard perturbative series, modified to accommodate the LDE, whereas our ansatz already
incorporates the exact asymptotic behaviour of the wavefunction, that is a non-perturbative
contribution.

We are currently working on the application of this method to the calculation of the excited
states of the AHO and to more general anharmonic potentials.
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